
ASTC/MGA 2001 Paper Number M097

Interoperability Strategy Rosetta Stone

Paul W. Sutton
Interoperability Manager

Warfare Analysis, Modeling, and Simulation (PMW 153)
Space and Naval Warfare Systems Command (SPAWAR)

4301 Pacific Highway
San Diego, CA 92110-3127

 (619) 553-9632
psutton@spawar.navy.mil

Keywords:

C4ISR System, DII COE, HLA, Interoperability, JTA, Model

ABSTRACT: Interoperability strategies are prescribed and implied by DoD, Joint, and Service interoperability policy
documents, especially master plans, but the technical alternatives for specifying a distributed computing architecture are
not described in terms of network and application cost/performance trade-offs. What are the technical alternatives?
What are their cost/performance trade-offs? Do the alternatives reflect the most recent and most promising technology
advancements? Are they flexible enough to easily incorporate and integrate future technology advances? Are they
likely to result in significant improvements to real, physical, end-to-end interoperability? This paper provides a
“Rosetta Stone,” in the form of two hyper cubes, to help C4ISR system and simulation program managers, developers,
and users, summarize, sort out, compare, contrast, and understand the cost/performance trade-off implications of se-
lecting a specific technical interoperability strategy. One hypercube depicts three network performance trade-offs, scal-
ability, reliability, and delay (latency), and the other hypercube shows application performance trade-offs, runtime,
complexity, and development time/cost, associated with the adoption of each technical interoperability strategy. To-
gether, they enable a C4ISR system or simulation program manager or developer to carefully weigh the performance
trade-offs associated with selecting a particular technical interoperability strategy before making a final decision.

1. INTRODUCTION

When French Engineer M. Boussard unearthed the
Rosetta stone in 1799, it ultimately revealed the secret
of translating Egyptian hieroglyphics, something that
had eluded man for almost two thousand years.
(Brewer 2000)

“The hardest thing in the world to understand
is income tax.” -- Albert Einstein

Interoperability strategy, though not as difficult to un-
derstand as hieroglyphics or income tax, has remained
extremely difficult to comprehend. This article pro-
vides a Rosetta stone to C4ISR (Command, Control,
Communications, Computers, Intelligence, Surveil-
lance, and Reconnaissance) system and simulation pro-
gram managers, developers, and users that will enable
them to unravel the interoperability strategy puzzle.

2. INTEROPERABILITY STRATEGY

The purpose of this paper is to help C4ISR system and
simulation program managers, developers, and users,
summarize, sort out, compare, contrast, and understand
the cost/performance trade-off implications of selecting
a specific technical interoperability strategy. Interop-
erability is severally defined here as:

“The ability of the systems, units, or forces to pro-
vide services to and accept services from other
systems, units, or forces, and to use the services so
exchanged to enable them to operate effectively to-
gether. The conditions achieved among communi-
cations-electronics systems or items of communi-
cations-electronics equipment when information or
services can be exchanged directly and satisfacto-
rily between them and/or their users.” (CJCS
1995)

“The ability of a model or simulation to provide
services to and accept services from other models
and simulations, and to use the services so ex-
changed to enable them to operate effectively to-
gether.” (DoD 1994)

ASTC/MGA 2001 Paper Number M097

2

Strategy is used here to mean a set of goals or objec-
tives, and the means of achieving them. It is an ap-
proach or method of getting something done.
(Comerford and Callaghan 1999)

3. HYPERCUBES – FOR VISUALIZING

COST/PERFORMANCE TRADEOFFS

The approach taken to analyzing interoperability strat-
egies is to plot each strategy with two sets of perform-
ance attributes or dimensions, in two separate hyper
cubes, with one hypercube representing network per-
formance dimensions, and the other hypercube repre-
senting application performance dimensions, as shown
in Figures 3.1 and 3.2. Various interoperability strate-
gies can then be plotted as points in the three-dimen-
sional space of each hypercube, with the origin of each
hypercube representing the reference point, architec-
ture compliance (HLA and DII COE), for all the other
strategies. Each axis or dimension in each hypercube is
a nominal scale, with each plotted point representing
nominal values (more than, less than, the same as)
normalized to the origin or reference point. The per-
formance dimensions in each hypercube are assumed to
be orthogonal to one another to permit each interopera-
bility strategy to be plotted in three-dimensional space,
even though they may not always be completely inde-
pendent of each other all the time. In this manner, the
cost-performance tradeoffs of each interoperability
strategy can then be visualized, compared, contrasted,
and more easily understood.

3.1 Network Performance Dimensions Hypercube

As can be seen in Figure 3.1, network performance
dimensions include scalability, delay, and reliability,
where:

Scalability is defined as:

“… the ability of a computer application or product
(hardware or software) to continue to function well
as it (or its context) is changed in size or volume in
order to meet a user need. Typically, the rescaling is
to a larger size or volume. The rescaling can be of
the product itself (for example, a line of computer
systems of different sizes in terms of storage, RAM,
and so forth) or in the scalable object's movement to
a new context (for example, a new operating sys-
tem). It is the ability not only to function well in the
rescaled situation, but to actually take full advantage
of it.” (Thing 2001)

Delay is used as “1) In a network, latency, a synonym
for delay, is an expression of how much time it takes
for a packet of data to get from one designated point to
another. In some usages (for example, AT&T), latency
is measured by sending a packet that is returned to the
sender and the round-trip time is considered the
latency. 2) In a computer system, latency is often used
to mean any delay or waiting that increases real or per-
ceived response time beyond the response time de-
sired.” (Thing 2001) and …

Reliability is taken to mean,

“An attribute of any system that consistently produces
the same results, preferably meeting or exceeding its
specifications. The term may be qualified, e.g., soft-
ware reliability, reliable communication.” (Howe 1997)

Similarly, reliable communication is, “Communication
where messages are guaranteed to reach their destina-
tion complete and uncorrupted and in the order they
were sent.” (Howe 1997)

3.2 Application Performance Dimensions

Hypercube

Application performance dimensions are similarly de-
picted in Figure 3.2. They include development
time/cost, complexity, and runtime, where:

The operational definition of application development
time/cost used here is “the total man-hours, calendar
time, and monetary cost required to design, develop,
test, document, market, and package a fully operational
version of the application.”

Application complexity can be defined in terms of its
algorithms, “The level in difficulty in solving mathe-
matically posed problems as measured by the time,
number of steps or arithmetic operations, or memory
space required (called time complexity, computational
complexity, and space complexity, respectively). The
interesting aspect is usually how complexity scales
with the size of the input (the "scalability"), where the
size of the input is described by some number N. Thus
an algorithm may have computational complexity
O(N^2) (of the order of the square of the size of the in-
put), in which case if the input doubles in size, the
computation will take four times as many steps.”
(Howe 1997)

Application complexity can also be defined in terms of
the number of source code fragments (modules) and
the number of control flow paths that connect them in a
flowgraph of the application. A well-known metric,
Cyclomatic Complexity, V=E-N+2, was devised to

ASTC/MGA 2001 Paper Number M097

Figure 3.1 Interoperability Strategies’ Network Dimensions

More ScalableLess Scalable

Less
Delay

More
Delay

More

Relia
ble

Less

Relia
ble

(Gateway, Middleware)

(ADS - Advanced Distributed Simulation)

(Architecture Compliance)

(Componentware,
Embedded System)

(Architecture Integration)

(Scripting/Glue Language)

(SPEEDES – Synchronous Parallel
Environment for Emulation and

Discrete Event Simulation)

Figure 3.1 Interoperability Strategies’ Network Dimensions

More ScalableLess Scalable

Less
Delay

More
Delay

More

Relia
ble

Less

Relia
ble

(Gateway, Middleware)

(ADS - Advanced Distributed Simulation)

(Architecture Compliance)

(Componentware,
Embedded System)

(Architecture Integration)

(Scripting/Glue Language)

(SPEEDES – Synchronous Parallel
Environment for Emulation and

Discrete Event Simulation)

Hypercube Octant
Network Dimension Values

Interoperability Strategies

Hypercube Origin, Center,
Reference Point

Architecture Compliance:
DII COE and HLA

Less Scalable, Less Reliable,
More Delay

Componentware, Embedded System,
Gateway, Middleware

More Scalable, Less Reliable,
More Delay

Scripting / Glue Language

More Scalable, More Reliable,
Less Delay

ADS – Advanced Distributed Simulation,
SPEEDES – Synchronous Parallel
Environment for Emulation and Discrete
Event Simulation,
Architecture Integration

Table 3.1 Interoperability Strategies’ Network Dimensions
3

ASTC/MGA 2001 Paper Number M097

Figure 3.2 Interoperability Strategies’ Application Dimensions

Lower
Development

Time / Cost

Higher
Development

Time / Cost

Less
Complex

More
Complex

Faste
r

Runtim
e

Slo
wer

Runtim
e

(Middleware)

(Architecture Integration)

(Architecture Compliance)

(Embedded System)

(ADS – Advanced Distributed
Simulation)

(Componentware)

(Scripting/Glue Language)

(Gateway)

(SPEEDES – Synchronous Parallel Environment
for Emulation and Discrete Event Simulation)

Figure 3.2 Interoperability Strategies’ Application Dimensions

Lower
Development

Time / Cost

Higher
Development

Time / Cost

Less
Complex

More
Complex

Faste
r

Runtim
e

Slo
wer

Runtim
e

(Middleware)

(Architecture Integration)

(Architecture Compliance)

(Embedded System)

(ADS – Advanced Distributed
Simulation)

(Componentware)

(Scripting/Glue Language)

(Gateway)

(SPEEDES – Synchronous Parallel Environment
for Emulation and Discrete Event Simulation)

Hypercube Octant
Network Dimension Values

Interoperability Strategies

Hypercube Origin, Center,
Reference Point

Architecture Compliance:
DII COE and HLA

Higher Development Time/Cost,
Slower Runtime, More Complex

Embedded System,
Middleware

Higher Development Time/Cost,
Faster Runtime, More Complex

ADS – Advanced Distributed
Simulation

Lower Development Time/Cost,
Slower Runtime, More Complex

Componentware,
Gateway

Lower Development Time/Cost,
Slower Runtime, Less Complex

Scripting/Glue Language

Lower Development Time/Cost,
Faster Runtime, Less Complex

SPEEDES – Synchronous Parallel
Environment for Emulation and
Discrete Event Simulation,
Architecture Integration

Table 3.2 Interoperability Strategies’ Application Dimensions
4

ASTC/MGA 2001 Paper Number M097

5

quantify this type of complexity. (McCabe 1976) Sig-
nificantly, there is a correlation between complexity
and the number of faults in an application. (Yacoub, et
al. 1999) and …

Runtime is defined as, “the period of time during which
a program is being executed, as opposed to compile
time or load time.” (Howe 1997)

4. INTEROPERABILITY STRATEGIES –

ANALYSIS AND DISCUSSION

Interoperability strategies are plotted in Figures 3.1 and
3.2, and are listed in Tables 3.1 and 3.2. The rationale
for plotting each strategy is analyzed, discussed, and
explained in the following sections.

4.1 Architecture Compliance

Two distributed computing architectures are mandated
by the Joint Technical Architecture (JTA) for military
applications, DII COE (Defense Information Infra-
structure Common Operating Environment) for C4ISR
system applications, and the HLA (High Level Archi-
tecture) for M&S (Modeling and Simulation) applica-
tions. (DISA 1997a) (USD(A&T) 1996) Since all
military applications must comply with these architec-
tures, architecture compliance is used here as the refer-
ence point for normalizing cost and performance at-
tributes of all the other interoperability strategies.

4.1.1 DII COE (Defense Information
Infrastructure Common Operating Environment).

DII COE provides a standardized operating environ-
ment for command and control applications. It in-
cludes application program interfaces (APIs) for differ-
ent types of applications such as Service Command and
Control (C2), common support applications (e.g., mes-
sage processing), infrastructure services (e.g., commu-
nications), a kernel (e.g., Motif), and a shared data en-
vironment (SHADE) that includes various databases
such as intelligence. These interfaces and services are
implemented as concentric layers that reside on top of
the host computer’s operating system. (DISA 1997b)

4.1.1.1 DII COE Advantages and
Disadvantages. DII COE’s principle advantages
include:

• Segmented C4ISR applications behave in a pre-

dictable, familiar, consistent, uniform manner.
• Compliant applications are generally compatible

with one another.

• DII COE standards and specifications are closely
controlled by DISA with frequent reviews and
widespread participation by the Services and other
users.

DII COE also has some disadvantages:

• DII COE compliance at Level 5 does not ensure

that C4ISR applications will necessarily be
interoperable with one another. (Sutton 1999)

• DII COE does not provide all the interfaces or
services required by simulations, e.g., time
management. As a result, simulations must run on
a separate distributed computing architecture such
as HLA. This prevents C4ISR applications from
being inherently interoperable with simulations.

• DII COE is not a true open-systems standard in the
sense that other distributed computing architec-
tures are, such as CORBA (Common Object
Request Broker Architecture).

4.1.2 HLA (High Level Architecture).

“HLA is the technical architecture for DoD Simula-
tions. (It provides) major functional elements, inter-
faces, design rules, pertaining to all DoD simulation
applications, and providing a common framework
within which specific system architectures can be de-
fined.” (AEgis 1998)

4.1.2.1 HLA Advantages and Disadvan-
tages. An excellent comparison of three distributed
computing architectures, HLA, CORBA, and RMI
(Remote Method Invocation), which clearly explains
their relative advantages and disadvantages, is summa-
rized in Table 4.1.2.1. (Buss and Jackson 1998)

Additional objections to HLA include (Davis and
Moeller 1999):

• HLA does not scale well. It scales as N2, while

other distributed computing architectures, such as
CORBA, scale as N, because they provide direct
communication between objects.

• It doesn’t provide a hierarchical system-of-systems
modeling framework for C4ISR systems.

• It isn’t extensible or evolvable to new distributed
computing environments such as on-line planning
and control, and multiple-use design, execution,
and training.

• It acts as a barrier to incorporating advancements
in computing and networking technologies
because it was designed to preserve and reuse
existing legacy models and simulations.

ASTC/MGA 2001 Paper Number M097

6

Other serious HLA problems have been identified
(Nance 1999):

• HLA provides data exchange mechanisms such as

data formats, but no metadata. As a result, data
exchange can’t evolve as technology changes.

• HLA suffers from time management problems.
Dissimilar time management mechanisms, e.g.,
one federate time-stepped (e.g., EADSIM), and
one federate event-stepped (e.g., NSS), introduce
computational inefficiencies, such as slower
runtime.

• Incompatible timing granularity (time scale dif-
ferences) can cause serious faults in parallel
federates. Conservative federates may experience
slower runtimes or crashes, and optimistic
federates have a higher chance of having time
errors.

4.2 Gateway

A gateway is, “a device that connects two systems,
especially if the systems use different protocols. For
example, a gateway is needed to connect two
independent local networks, or to connect a local
network to a long-haul network.” (Stallings 1994)

A transport gateway “moves data from one type of
network to another, typically by embedding all of the
information associated with one type of protocol into
another.” There are two approaches used. Tunneling
involves passing traffic from one type of network
through another type of network, e.g., one gateway
inserts SNA data into TCP/IP packets and another
gateway extracts the data from the packets. With
encapsulation, a workstation embeds a foreign protocol
into its local protocol and sends it to a gateway, which
then extracts it and sends it to the appropriate network.
Since gateways introduce overhead and delay into the
network, they are plotted in the hypercube octants with
more delay and slower runtime. (Breit 1999)

ATTRIBUTE HLA/RTI CORBA RMI
Types of Applications
Supported

Legacy

Legacy

New

Programming Languages
Supported

Ada, C++, Java,
CORBA IDL

Ada, C, C++, Java,
OO-COBOL,
Smalltalk

Java

Direct Communications
Between Objects
Provided

No

Yes

Yes

Transfer of Object
Ownership Provided

Yes

No

No

Time Management
Services Provided

Yes

No

No

Security Management
Services Provided

No

No

Yes

Network
Communications
Protocols Specified

Left to RTI vendor

IIOP

TCP/IP

Cross-Language
Compatibility Overhead

RTI implementer

None

Not compatible

Meta-Language
Provided

None

IDL

None

Table 4.1.2.1 Comparison of Distributed Computing Architecture Attributes

ASTC/MGA 2001 Paper Number M097

7

4.2.1 Gateway Advantages and

Disadvantages.

The primary advantage of using a gateway is its ability
to permit an application written for one language, sys-
tem, and architecture, to interoperate with an applica-
tion written for a different language, system, and ar-
chitecture, without having to reprogram either applica-
tion. The gateway interoperability strategy, therefore,
is plotted in the hypercube octant with lower develop-
ment time/cost. Legacy applications written for the
DIS (Distributed Interactive Simulation) architecture,
for example, can interoperate with HLA-applications
without having to rewrite them to be compliant with
HLA.

Unfortunately, gateway disadvantages are legion and
they far outweigh its primary advantage. Significant
gateway disadvantages include (Dodge 2000):

• A point-to-point gateway connection creates a sin-

gle point of failure, which reduces system reliabil-
ity.

• Gateways can become communications bottle-
necks that reduce communications reliability. The
Army Aviation and Missile Command (AMCOM),
for example, experienced severe data anomalies,
such as erroneous roll rates, altered data, and ap-
pearance field perturbations, in its HLA/DIS gate-
way. (Hall, et. al. 1998)

• Gateways introduce delays into a network, which
can result in slower application runtime and net-
work instability. AMCOM, for example, experi-
enced network delays of up to 12 seconds during
periods of peak DIS-HLA translation. They also
experienced slower application runtimes and
crashes caused by gateway instability and gateway
disenfranchisement with HLA RTI (Run Time In-
frastructure). (Hall, et. al. 1998)

• Gateways scale poorly (N2), which makes system
implementation and maintenance more complex.

Gateways, for the reasons noted above, are plotted in
the Less Scalable, More Delay, Less Reliable, Slower
Runtime, More Complex, Lower Development
Time/Cost octants of Figures 3.1 and 3.2. It is also in-
teresting to note that networking technology advances
may eventually eliminate the need for gateways. High-
speed LAN(Local Area Network)s that run Internet
Protocol will plug into WAN(Wide Area Network)s via
Sonet technology on carrier backbones, or by plugging
directly into the WAN’s fiber-optic backbone. (Adhi-
kari 1998)

4.3 Middleware

Middleware is “a class of software whose purpose is to
simplify the complex problem of developing and using
applications on different platforms of computers, con-
nected over different types of networks. In other words,
Middleware is a layer of software that supports multi-
ple communication protocols, multiple programming
languages, and can be executed on different computer
platforms. It fits between the application program and
the network interface, and is in effect a set of Applica-
tion Program Interfaces (APIs) that software program-
mers can use to avoid concerns about the underlying
network and operating system software.” (Whiting
1994)

4.3.1 Middleware Advantages and
Disadvantages.

As pointed out in its definition, the main advantage of
middleware is that it allows application programs to be
written in different programming languages to operate
on different kinds of computer hardware, operating
systems, and networks, without having to rewrite the
application program for each different environment.

Unfortunately, middleware advantages are offset by a
number of disadvantages:

• Scalability is an important problem. “Most

middleware has been designed with procedural
protocols in mind, but many systems evolve to use
various nonprocedural ones: Multicast-based event
frameworks, remote-execution frameworks, and
mobile agent frameworks all exist in one form or
another, but the most common versions are all un-
comfortably grafted on the same old stuff.” (Milo-
jicic 1999)

• Delay is another significant problem, “… conven-
tional ORB-based systems incur significant
throughput and latency overhead.” (Campbell, et
al. 1999)

• Reliability is also considered problematic. “In
many cases, OMG found, code that runs above the
operating system is more error prone than the
commercial RTOSes (real-time operating sys-
tems), which have been wrung out well during
years of usage.” (Costlow 1998)

• Complexity and application development time/cost
present even greater difficulties. Middleware ad-
aptations to new types of applications, such as
multimedia, real-time, and mobility, have spawned
adaptations and evolutions such as Minimal
CORBA, Real-time CORBA, and interceptors, but

ASTC/MGA 2001 Paper Number M097

8

“… in general there is no principled approach to
these adaptations and evolutions. They are carried
out in ad-hoc ways, yielding application program-
ming difficulties and inordinate system complex-
ity.” (Eliassen, et al.1999)

• Application runtime is also problematic. “The cur-
rent generation of middleware has a deserved
reputation for running slowly. In an ORB-based
middleware system, developers simply model the
legacy component using the same IDL they use for
creating new objects, then write wrapper code that
translates between the standardized bus and the
legacy interfaces.” (Campbel, et al. 1999)

Considering the numerous examples above,
middleware is plotted in the Less Scalable, More
Delay, Less Reliable, Higher Development Time/Cost,
More Complex, and Slower Runtime octants of the
hyper cubes.

4.4 Componentware

Componentware or Component Software is
“…application development … using larger building
blocks than lines of code. DARPA used to call this
mega-programming.” It promises “ … rapid applica-
tion assembly from components -- Leggo-like reuse to
build large systems from known components.” “Com-
ponents themselves do not have to be tested and re-
tested. It may be possible to derive properties of con-
figurations of components from the properties of the
component parts and the glue holding components to-
gether. Because all of the interfaces between compo-
nents are standardized, it is possible to mix components
from different manufacturers in a single system.
Similarly, the goal of component software is to stan-
dardize the interfaces between software components so
that they too can work together seamlessly.” (Compo-
nentware Glossary 2001)

4.4.1 Componentware Advantages and
Disadvantages.

Componentware’s chief advantage is its promise of
lower application development time and cost, but it
may be awhile before that promise is realized. DCOM
(Distributed Component Object Model) APIs (Appli-
cation Programming Interfaces), for example, “are not
structured and presented in an intuitive way for build-
ing distributed client/server applications. As a result,
… the DCOM architecture often involves non-intuitive
programming hacks to provide the functionality re-
quired in a client/server environment.” (Wang, et al.
1997)

Componentware’s numerous disadvantages include:

• Scalability is a problem because “… deployment

of … (distributed, loosely-coupled, heterogeneous,
asynchronous event-driven) systems at the scale of
the Internet imposes new challenges that are not
met by existing technology. In particular, the
technology to support an event-based architectural
style is well developed for local-area networks, …
but not for wide-area networks. One of these sys-
tems, Yeast, … is a general-purpose platform for
building distributed applications in an event-based
architectural style, and it supports event-based in-
teraction quite naturally within local-area net-
works. However, its centralized-server architecture
limits its scalability to wide-area networks.”
(Rosenblum, et al. 1998)

• Componentware can also introduce delays into a
network – “There are a number of challenging is-
sues that need to be addressed for this approach:
communication delays have to be taken account, as
well as the overhead to locate CORBA objects be-
cause of CORBA location transparency.” (Le and
Chakravarthy 1998)

• Reliability of componentware is also troubling.
“The OS (Operating System) is oblivious to the
component abstraction and cannot effectively pro-
vide a service tailored to individual components.
In a component-based application, a file opened by
one component might inadvertently be manipu-
lated or closed by another. Further, lack of isola-
tion tends to result in one component’s bugs
crashing another ...” (Mendelsohn 1997)

• Componentware seems to be inordinately complex
at its present level of maturity. “The introduction
of composable simulation, while providing im-
proved flexibility in simulations, can actually in-
crease the level of complexity in creating a par-
ticular target simulation.” (Aronson 2000)
“Classes/objects implemented in one programming
language cannot interoperate with those implanted
in other languages. In some object-oriented
languages even the same compiler version has to
be used so that objects become interoperable.”
(Pree 1997)

• Runtime also seems problematic, “Although fre-
quent procedure calls and message sends are im-
portant structuring techniques in object-oriented
languages, they can also severely degrade applica-
tion run-time performance.” (Grove 1998)

One can conclude, therefore, that componentware
should be plotted in the Less Scalable, More Delay,
Less Reliable, Lower Development Time/Cost, More

ASTC/MGA 2001 Paper Number M097

9

Complex, and Slower Runtime octants of the hyper
cubes

4.5 Embedded System

An embedded system is “Hardware and software which
forms a component of some larger system ... Often it
must provide real-time response.” (Howe 1997) This
definition is oriented toward microprocessor imple-
mentations. In the broader sense, this definition is used
here to include embedded software, embedded simula-
tion, and embedded training – it might only include
software.

4.5.1 Embedded System Advantages and
Disadvantages.

• Embedded systems do not generally scale well,

“… RPC toolkits are well suited for conventional
request/response-style applications running on
low-speed networks. Until recently, however, the
QoS specification and enforcement features of
conventional DOC middleware and ORBs, as well
as their efficiency, predictability, and scalability,
have not been suitable for applications with hard
real-time requirements.” (Schmidt 1999)

• Embedded system delay and runtime are problem-
atic. “Conventional ORBs often incur significant
throughput and latency overhead. This overhead
stems from excessive data copying, non-optimized
presentation layer conversations, internal message
buffering strategies that produce non-uniform be-
havior for different message sizes, inefficient de-
multiplexing algorithms, long chains of intra-ORB
virtual method calls, and lack of integration with
underlying OS and network QoS mechanisms.”
(Schmidt 1999)

• The reliability of embedded systems is also cause
for concern. “… CORBA, DCOM, and RMI do
not require an ORB to notify clients when trans-
port layer flow control occurs. Therefore, it is
hard to write portable code and efficient real-time
applications that will not block when ORB end-
system and network resources are temporarily
unavailable. Likewise, conventional DOC ORBs
do not propagate exceptions stemming from
missed deadlines from servers to clients, which
makes it hard to write applications that behave
predictably when congestion in the communication
infrastructure or end-systems causes deadlines to
be missed.” (Schmidt 1999)

• Similarly, application development time, cost, and
complexity are greater than they are for other
interoperability strategies. Whenever one system
is designed and built to reside within another, dis-
similar system, the developer must then account

for new interfaces and interactions that are often
novel, unplanned, and unexpected. “… real-time,
embedded system software development has his-
torically lagged mainstream software development
methodologies. As a result, real-time embedded
software systems are costly to evolve and main-
tain. Moreover, they are so specialized that they
cannot adapt readily to meet new market opportu-
nities or technology innovations.” (Schmidt 1999)

There has been considerable research directed at mak-
ing simulations interoperable with C4ISR systems, and
embedded systems are one of the specific strategies be-
ing considered. Various approaches within this strat-
egy include: (1) embedding the simulation application
directly within the C4ISR application (a.k.a. embedded
simulation or embedded training); (2) embedding HLA
RTI within DII COE at the common applications level;
(3) at the common services level; and (4) at the kernel
level. Since both DII COE and HLA RTI are forms of
middleware built on top of operating systems, and
since both provide data and object management ser-
vices, how will the embedded system reconcile how
two different sets of common services are accessed and
used? How will one application, service, or operating
system avoid becoming disenfranchised with the other?

Considering the above advantages and disadvantages, it
seems reasonable to plot embedded systems in the Less
Scalable, More Delay, Less Reliable, Higher Develop-
ment Time/Cost, More Complex, and Slower Runtime
octants of the hyper cubes.

4.6 Scripting/Glue Language

Scripting or Glue languages “assume that a collection
of useful components already exist in other (proce-
dural) languages. They are not intended for writing
applications from scratch but rather for combining
components.” Examples of scripting languages include
Perl, Python, Rexx, Tcl, Visual Basic, and Unix shells.
(Ousterhout 1998)

4.6.1 Scripting/Glue Language Advantages
and Disadvantages.

Advantages include (Ousterhout 1998):

• Scripting languages provide better scalability be-

cause, “A type-less language makes it much easier
to hook together components. There are no a pri-
ori restrictions on how things can be used.”

• Scripting language lowers application develop-
ment time and cost – “In every case, the scripting
version required less code and development time
than the system programming version.”

ASTC/MGA 2001 Paper Number M097

10

• Application complexity is also reduced because
scripting languages are type-less. New objects can
be used with existing interfaces without having to
write conversion code to translate between differ-
ent types of objects.

Unfortunately there’s still a downside:

• Scripting languages provide slower runtimes and

longer delays than procedural languages because
they use interpreters instead of compilers.

• The type-less nature of scripting languages is also
a potential source of unreliability because gluing
applications don’t check for errors. Instead, that
task is left to the components built with systems
programming languages.

As indicated above, Scripting/Glue Language is plotted
in the More Scalable, Less Reliable, More Delay,
Lower Development Time/Cost, Slower Runtime, and
Less Complex octants of the hyper cubes.

4.7 Advanced Distributed Simulation (ADS)

Advanced Distributed Simulation (ADS) has been de-
fined as, “any application or architecture which em-
ploys the characteristics of distribution and networking
in a way which permits a number of nodes, entities, or
devices to interact with each other for some common or
shared purpose …” (Murphy and Roane 1999) It was
implemented in DARPA’s Synthetic Theater of War
(STOW) Advanced Concept Technology Demonstra-
tion (ACTD), which culminated in the largest entity
level simulation ever used for a distributed training ex-
ercise.

4.7.1 ADS Advantages and Disadvantages.

ADS’ advantages and disadvantages include (Cole, et
al. 1998):

• Improved scalability through bi-level multicast

communications (IP [Internet Protocol] multicast
LAN-to-LAN service over less dynamic ATM
(Asynchronous Transfer Mode) point-to-
multipoint virtual circuit wide area service).

• Lower network delay and faster application run-
times due to low-latency, high speed ATM com-
munications service, with assured low latency and
guaranteed bandwidth through QoS (Quality of
Service) reservation.

• Decreased reliability of unicast traffic. Multicast
simulation data were signaled as VBR (Variable
Bit Rate) point-to-multipoint SVCs (Switched
Virtual Circuits), while unicast traffic was sent

over UBR (Unspecified Bit Rate) SVCs. VBR
traffic had priority over UBR traffic, which was
dropped first if network congestion was encoun-
tered.

• Application complexity and development time/cost
were somewhat higher with ADS than with simple
architecture compliance (HLA/RTI on LAN) be-
cause special network communications equipment,
such as the QCBMR (QoS-Capable, Bi-level,
Multicast Router), had to be developed to support
some of the new, advanced networking techniques.

For these reasons, ADS is portrayed as a More Scal-
able, Less Delay, Less Reliable, Higher Development
Time/Cost, More Complex, and Faster Runtime inter-
operability strategy in the hyper cubes.

4.8 SPEEDES (Synchronous Parallel Environment

for Emulation and Discrete Event Simulation)

SPEEDES is a distributed simulation architecture that
was specifically designed for parallel discrete-event
simulation (PDES). It was developed by JPL for
NASA in 1990 and is licensed by NASA. It includes
application programming interfaces, management ser-
vices, a modeling framework, time management, an
event processing engine, a communications library and
interfaces. The Office of Naval Research selected
SPEEDES in 1996 as the most promising simulation
execution framework for simulation development.
(Wallace 2000)

4.8.1 SPEEDES Advantages and
Disadvantages.

SPEEDES’ advantages and disadvantages include:

• SPEEDES scales very well. For example, total

event and message memory consumption during
application execution increased only 10 percent as
the number of processors was increased from 32 to
96 nodes. (Steinman, et al. 1999)

• Network delay is also less than that experienced
with other distributed computing architectures.
There has been less delay for shared memory im-
plementations (e.g., 11.3 usec) than TCP/IP im-
plementations (2 msec). Latency as a function of
message size remains low and constant for small
messages, and then increases exponentially when
the message begins to exceed the size of TCP/IP
packets. (Van Iwaarden 1999)

• SPEEDES is considered more reliable (Wallace
2000) than other distributed computing architec-
tures by its proponents, but others warn that reli-
ability problems may still be encountered when
“synchronizing a parallel discrete-event simula-

ASTC/MGA 2001 Paper Number M097

11

tion: simulation code that runs correctly on a serial
machine may, when run in parallel, fail catastro-
phically.” (Nicol and Liu 1997)

• SPEEDES application runtimes are also superior
to those of other distributed computing
architecture – which is what one would expect
with parallel processors. Recent tests
demonstrated “nearly perfect speedup when going
from 32 to 96 processors.” (Steinman, et al. 1999)

• Application complexity is similarly reduced by the
use of SPEEDES – “This mapping, or API trans-
lation, is implemented in a compatibility library,
and allows the infrastructure model software to be
linked to the SPEEDES libraries for runtime exe-
cution as a virtual single, composite simulation.”
(Walace, et al. 2000)

• SPEEDES also seems to contribute to lower appli-
cation development time and cost. JSIMS Mari-
time, for example, achieved an average productiv-
ity of 640 SLOC/person-month, which compared
quite favorably with an industry average of 200
SLOC/person-month. (Wallace, et al. 2000)

• Recent experience with SPEEDES, therefore, sug-
gests that it should be plotted as a More Scalable,
Less Delay, More Reliable, Lower Development
Time/Cost, Less Complex, and Faster Runtime in-
teroperability strategy in the hyper cubes.

4.9 Architecture Integration

Architecture integration is used here to mean an en-
tirely new, holistic distributed computing architecture
that combines the advantages of each interoperability
strategy while rejecting its disadvantages. It means
building a single adaptable, evolvable, open architec-
ture for both C4ISR applications and simulations that
will optimize both network and application perform-
ance in a heterogeneous environment.

4.9.1 Architecture Integration Advantages
and Disadvantages.

The architecture integration interoperability strategy is
plotted in the optimum position of each hypercube be-
cause it represents the ideal strategy, with all of the
strengths and none of the weaknesses of each individ-
ual strategy. Some may view architecture integration
as an overly ambitious and idealistic holy grail, while
others view it as a perfectly logical conclusion of pre-
vious, like-minded research efforts.

5. CONCLUSIONS

The following conclusions may be drawn from the
above analysis, discussions, and explanations:

• Network and application performance attributes,

development time, and development cost can be
evaluated and plotted in hyper cubes that permit
program managers, system developers, and users
to visualize, compare, and contrast their relative
tradeoffs. In this paper plotting points
representing contending interoperability strategies
on nominal scales of orthogonal network and
application performance and cost dimensions did
this.

• The hypercube approach to visualizing and under-
standing cost/performance tradeoffs of interopera-
bility strategies requires some simplifying as-
sumptions that can rightfully be challenged. Per-
formance dimensions are portrayed as being or-
thogonal to one another, but it is obvious that they
are not entirely independent of each other. Net-
work delays, for example, are related to communi-
cations reliability. Application complexity is re-
lated to development time and cost, and so forth.
The author understands this, but believes that the
violation of strict independence is far outweighed
by our ability to plot and visualize each strategy in
the octant of the hypercube that represents the ap-
propriate combination of nominal values. Also,
each strategy is not mutually exclusive to the all
the others. Some strategies may be combined with
others in a particular distributed computing archi-
tecture. Gateways, for example, are often used
with HLA. The definitions of some strategies
overlap. HLA, for example, is considered to be
middleware. Nonetheless, the author believes that
the usefulness of hyper cubes overshadows these
simplifying assumptions.

• Figure 3.1 suggests that gateways and middleware
provide the least relative advantage in terms of
network performance tradeoffs, while ADS and
SPEEDES provide the most. Scripting/Glue lan-
guages are only slightly better than gateways and
middleware since they scale better and are useful
for integration.

• Figure 3.2 indicates that middleware and em-
bedded systems provide the least relative advan-
tage in terms of application performance tradeoffs,
while SPEEDES provides the most. ADS is the
next best choice after SPEEDES because it pro-
vides faster application runtimes in long-haul envi-
ronments through multicasting and QoS. Gate-
ways and componentware are only slightly better
than middleware and embedded systems -- because
gateways eliminate the need to reprogram legacy
applications to make them architecture compliant,

ASTC/MGA 2001 Paper Number M097

12

while componentware permits new applications to
be built from reused components.

• Figures 3.1 and 3.2 both imply that SPEEDES is
probably the best overall interoperability strategy
in terms of tradeoffs. It seems to be closer to the
optimum strategy, architecture integration, than
any other strategy.

• Architecture integration is the optimum interopera-
bility strategy in the author’s view, because it
would lead to a single, integrated, open systems,
distributed computing architecture that could be
used for both C4ISR and simulation applications.
This would result in a single networking environ-
ment that would be vastly better and cheaper than
the separate environments we have today. Unfor-
tunately, political realities will probably prevent
this from ever happening. Others also feel that too
many domain-specific compromises would prevent
us from ever achieving universal interoperability.

6. RECOMMENDATIONS

The following recommendations are made to improve
interoperability:

• Future research should be directed toward bench-

marking the performance and cost attributes of in-
teroperability strategies – so that actual measure-
ments of performance and cost can be plotted on
interval scales (instead of the more subjective
nominal scales). This research should be con-
ducted in a controlled environment that facilitates
repeatable experiments that yield consistent,
comparable data.

• The DoD should combine and leverage its research
efforts and resources to design and build a single
distributed computing architecture that can be used
for both C4ISR and simulation applications. Ar-
chitecture Integration should be employed as the
interoperability strategy for achieving this goal be-
cause it leverages the experience and resources
previously used to build other contending archi-
tectures. This is the long-term solution.

• In the short-term, the most promising
interoperability strategy that has demonstrated the
best performance/cost tradeoffs should be selected
for adoption and improvement, while less promis-
ing strategies should be discarded. SPEEDES
should be examined more closely to determine
whether it should be adopted as the best approach
to achieving interoperability.

7. ACKNOWLEDGEMENTS

The author wishes to acknowledge the contributions of
CAPT Joe Celano, Program Manager, Warfare Analy-
sis, Modeling, and Simulation, Phillip Hornick, Deputy
Program Manager, and Candace Conwell, Technical
Director. This work would not have been possible
without their keen insight and special efforts.

8. REFERENCES

Adhikari, R. 1998. “Search for End-to-end Reliability,”
Information Week (March 9), Issue 672, 10-14. Man-
hasset.

AEgis. 1998. “DoD HLA Process and Policy,” Com-
prehensive HLA Introduction (21 April). Menlo Park,
California.

Aronson, J. 2000. “Benefits and Pitfalls of Composable
Simulation,” in Proceedings of the Spring Simulation
Interoperability Workshop (March). Orlando, Florida.

Breit, L. 1999. “Network gateways,” HP Chronicle
(Jan), Vol. 16, No. 2, 9-10. Austin, Texas.

Brewer, E.C. 2000. “Rosetta Stone,” in Dictionary of
Phrase and Fable (May). Bartleby.com, Philadelphia.
http://www.bartleby.com/81/14522.html

Buss, A.H. and Jackson, L. 1998. “Distributed Simula-
tion Modeling: A Comparison of HLA, CORBA, and
RMI,” in Proceedings of the 1998 Winter Simulation
Conference, Eds. D.J. Medeiros, E.F. Watson, J.S.
Carson and M.S. Manivannan, 819-825. Institute of
Electrical and Electronic Engineers, Piscataway, New
Jersey.

Campbell, A.T., Coulson, G., and Kounavis, M.E.
1999. “Managing Complexity: Middleware Ex-
plained,” IT Professional (Sept-Oct), Vol. 1, No. 5, 22-
28.

Chairman of the Joint Chiefs of Staff (CJCS) 1995.
CJCS Instruction 6212.01A, Compatibility, Interopera-
bility, and Integration of Command, Control, Commu-
nications, Computers, and Intelligence Systems (30
June), Enclosure A, p. A-3. Washington,D.C.

Cole Jr., R., Root, B., O’Ferrall, L., and Tarr, J. 1998.
“STOW Network Technologies and Operatonal
Lessons Learned,” 98S-SIW-103, in Proceedings of

ASTC/MGA 2001 Paper Number M097

13

the Spring Simulation Interoperability Workshop
(March). Orlando, Florida.

Comerford, D.W. and Callaghan, D.W. 1999. Strategic
Management: Text, Tools and Cases for Business Pol-
icy, 2nd ed. Kent Publishing.

Componentware Glossary. 2001.
http://www.objs.com/survey/ComponentwareGlossary.
htm#GlossaryTerms

Costlow, T. 1998. “Real-time software world raises the
reliability bar,” EETimes.com (February 13)
http://www.eet.com/news/98/994news/realtime.html

Davis, W.J. and Moeller, G.L. 1999. “The High Level
Architecture: Is there a better way?” in Proceedings of
the 1999 Winter Simulation Conference, Eds. P.A. Far-
rington, H.B. Nembhard, D.T. Surrock, and G.W.
Evans, 1595-1601. Institute of Electrical and Electronic
Engineers, Piscataway, New Jersey.

Defense Information Systems Agency (DISA). 1997a.
Joint Technical Architecture (JTA), Version 2.0 (1st
draft) (31 October). Washington, D.C.

Defense Information Systems Agency (DISA). 1997b.
“DII Perspective,” Defense Information Infrastructure
(DII) Conference (4 April). Washington, D.C.

Department of Defense (DoD). 1994. Department of
Defense Directive (DoDD) 5000.59, DoD Modeling
and Simulation (M&S) Management (4 January),
Enclosure 2, 1. Washington, D.C.

Dodge, D.S. 2000. “Gateways: A Necessary Evil?”
00F-SIW-107, in Proceedings of the Fall Simulation
Interoperability Workshop (September). Orlando,
Florida.

Eliassen, F., Andersen, A., Blair, G.S., Costa, F.,
Coulson, G., Goebel, V., Hansen, O., Kristensen, T.,
Plagemann, T., Rafaelsen, H.O., Saikoski, K.B., and
Yu, W. 1999. “Next Generation Middleware:
Requirements, Architecture, and Prototypes,” in Pro-
ceedings of the 7th IEEE Workshop on Future Trends of
Distributed Computing Systems, 60-65. Institute of
Electrical and Electronic Engineers, Piscataway, New
Jersey.

Grove, D. 1998. Ph.D Thesis: Effective Interprocedural
Optimization of Object-Oriented Languages.
http://www.cs.washington.edu/research/projects/cecil/
www/Papers/grove-thesis.html

Hall, K.L., Bentley, T., Harless, W., Lee, G., Roose,
K., and Sanders, B. 1998. “Performance and
Interoperability Observations of the Gateway Approach
to HLA Compliance for Legacy VR Simulations,” 98F-
SIW-131, in Proceedings of the Fall Simulation
Interoperability Workshop (September). Orlando,
Florida.

Howe, D., Ed. 1997. The Free On-line Dictionary of
Computing.
http://wombat.doc.ic.ac.uk/

Le, R. and Chakravarthy, S. 1998. “Support for Com-
posite Events and Rules in Distributed Heterogeneous
Environments,” Paper No. 101, in Proceedings of
Workshop on Computational Software Architectures
(5-8 Jan). Monterey, California.
http://www.objs.com/workshops/ws9801/program.html
#II-3

McCabe, T. 1976. “A Complexity Metric,” IEEE
Transactions on Software Engineering (Dec), Vol. 2,
No. 4, 308-320. Institute of Electrical and Electronic
Engineers, Piscataway, New Jersey.

Mendelsohn, N. 1997. “Operating Systems for Compo-
nent Software Environments,” Proceedings of the Sixth
Workshop on Hot Topics in Operating Systems (5-6
May), 49-54. Institute of Electrical and Electronic
Engineers, Piscataway, New Jersey.

Milojicic, D. 1999. “Middleware’s role, today and
tomorrow,” IEEE Concurrency (April-June), Vol. 7,
No. 2, 70-80. Institute of Electrical and Electronic
Engineers, Piscataway, New Jersey.

Murphy, W.S. Jr. and Roane, M.L. 1999. “Application
of the Analysis Federate in the Joint Advanced Distrib-
uted Simulation Joint Test Force Electronic Warefare
Phase II Test,” in Proceedings of the 1999 Winter
Simulation Conference (5-8 Dec), Eds. P.A. Farrington,
H.B. Nembhard, D.T. Surrock, and G.W. Evans, Vol.
2, 1109-1117.

Nance, R.E. 1999. “Distributed Simulation with Feder-
ated Models: Expectations, Realizations, and Limita-
tions,” in Proceedings of the 1999 Winter Simulation
Conference, Eds. P.A. Farrington, H.B. Nembhard,
D.T. Surrock, and G.W. Evans., 1026-1031. Institute of
Electrical and Electronic Engineers, Piscataway, New
Jersey.

ASTC/MGA 2001 Paper Number M097

14

Nicol, D.M. and Liu, X. 1997. “The Dark Side of Risk
(What your mother never told you about Time Warp),”
in Proceedings of the 1997 Workshop on Parallel and
Distributed Simulation (10-13 June), 188-195. Austria.

Ousterhout, J.K. 1998. “Scripting: Higher Level Pro-
gramming for the 21st Century,” Computer (March),
Vol. 31, No. 3, 23-30. Institute of Electrical and Elec-
tronic Engineers, Piscataway, New Jersey.

Pree, W. 1997. “Component-Based Software Devel-
opment – A New Paradigm in Software Engineering?”
in Proceedings of the Asia Pacific Software Engineer-
ing Conference 1997 and the International Computer
Science Conference 1997, 523-524. Institute of Electri-
cal and Electronic Engineers, Piscataway, New Jersey.

Rosenblum, D.S., Wolf, A.L., and Carzaniga, A. 1998.
“Critical Considerations and Designs for Internet-
Scale, Event-Based Compositional Architectures,”
Paper No. 033, in Proceedings of Workshop on
Computational Software Architectures (5-8 Jan).
Monterey, California.
http://www.objs.com/workshops/ws9801/program.html
#II-3

Schmidt, D.C. 1999. “Middleware Techniques and
Optimizations for Real-time Embedded Systems,” in
Proceedings of the 12th International Symposium on
System Synthesis (10-12 Nov), 12-16. Institute of Elec-
trical and Electronic Engineers, Piscataway, New Jer-
sey.

Stallings, W. 1994. Data and Computer Communica-
tions. Macmillan, Englewood Cliffs, New Jersey.

Steinman, J.S., Tran, T., Burckhardt, J., and Brutocao,
J.S. 1999. “Logically Correct Data Distribution
Management in SPEEDES,” 99F-SIW-067, in
Proceedings of the Fall Simulation Interoperability
Workshop (September). Orlando, Florida.

Sutton, P. 1999. “Interoperability: A New Paradigm,”
in Computational Intelligence for Modeling, Control &
Automation: Neural Networks & Advanced Control
Strategies, Ed. M. Mohammadian, 351-361. IOS Press,
Amsterdam.

Thing, Lowel, Ed. 2001. “Whatis.com,” TechTar-
get.com.
http://whatis.techtarget.com/WhatIs_Home_Page/0,432
4,,00.html

Under Secretary of Defense (Acquisition & Technol-
ogy) [USD(A&T)]. 1996. Memorandum, DoD High
Level Architecture (HLA) for Simulations (10
September). USD(A&T), Washington, D.C.

Van Iwaarden, R., Steinman, J.S., and Blank, G. 1999.
“A Combined Shared Memory and TCP/IP Implemen-
tation of the SPEEDES Communications Library,”
99F-SIW-095, in Proceedings of the Fall Simulation
Interoperability Workshop (September). Orlando,
Florida.

Wang, Y., Damani, O.P., and Lee, W. 1997.
“Reliability and Availability Issues in Distributed
Component Object Model (DCOM),” in Proceedings
of the Fourth International Workshop on Community
Networking (11-12 Sept), 59-63. Institute of Electrical
and Electronic Engineers, Piscataway, New Jersey.

Wallace, J., Celano, J., and Peterson, L. 2000.
“PANDA: An Approach to Simulatin Software Engi-
neering, Development, and Integration,” in Proceed-
ings of the 2000 Summer Computer Simulation Confer-
ence (16-20 July), Ed. W.F. Waite, 353-360. Vancou-
ver, British Columbia.

Whiting, R. 1994. “Getting on the Middleware
Express,” Client/Server Today (November), 70-75.

Yacoub, S.M., Ammar, H.H., and Robinson, T. 1999.
"Dynamic Metrics for Object Oriented Design,” in
Proceedings of the Sixth International Software
Metrics Symposium (4-6 Nov), 50-61.

Author Biography

Paul Sutton is the Navy Interoperability Manager in the
Warfare Analysis, Modeling, and Simulation Division,
PMW 153, of SPAWAR. He holds a Bachelor of
Science degree in General Engineering from the U.S.
Naval Academy, and a Master of Science degree in
Management from San Diego State University. He
has more than thirty years experience in distributed,
interactive modeling and simulation, advanced net-
working engineering, systems engineering, software
engineering, and project management. He has previ-
ously taught both undergraduate and graduate courses
in information systems and management science at
U.S. International University, San Diego State Uni-
versity, the University of San Diego, and the Univer-
sity of La Verne.

	4.1.1 DII COE (Defense Information Infrastructure Common Operating Environment).
	4.1.1.1 DII COE Advantages and Disadvantages. DII COE’s principle advantages include:
	4.1.2 HLA (High Level Architecture).
	4.1.2.1 HLA Advantages and Disadvan˜tages. An excellent comparison of three distributed comput˜ing architectures, HLA, CORBA, and RMI (Remote Method Invocation), which clearly explains their relative advantages and disad˜vantages, is summa˜rized in Tab
	4.2.1 Gateway Advantages and Disadvantages.
	4.3.1 Middleware Advantages and Disadvantages.
	4.4.1 Componentware Advantages and Disadvantages.
	4.5.1 Embedded System Advantages and Disadvantages.
	4.6.1 Scripting/Glue Language Advantages and Disadvantages.
	4.7.1 ADS Advantages and Disadvantages.
	4.8.1 SPEEDES Advantages and Disadvantages.
	4.9.1 Architecture Integration Advantages and Disadvantages.

